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Recap

» State-space Representation
* Linearization
— Approximation of nonlinear functions

— Jacobian

Linear and Time-Invariant System

%(t) = Ax(t) + Bu(t)

u(tr) y(?)
[ > State : x(7) > y(t)

Cx(t) + Du(t)

x(0) = x,




| ecture Overview

* Convolution integral and Impulse response
* Introduction to the Laplace Transform




Unit Step Function

* The unit step function is defined as

1, t=>0
g(t)z{o t <0

&(1)




Utility of Un

It Step Function

* Extracting pa
* For example,

rt of another signal.
the piecewise-defined signal x(t)

—t
e t=0
x(t) = ’ —
(®) { 0, t<0
can be written as  x(t) = e(t)e”t
A A
2
T ~t T g()e™
\_1 e 14 (1)
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Utility of Unit Step Function

* Combinations of unit step functions to create other signals.

0, t>1 can be written as
x(t) =1 1, 0<t<l1 _ _ _
0 F <0 x(t) =¢e(t) —e(t—1)
s ()  E(t—1)
1 1
—1 0 1 2t 1 0 1 5 1
A
1
e(t)—e(t—1)




Impulse Signal

* Dirac delta function or unit impulse is an idealization of a pulse signal that

P®)  Pulse Signal

* isverylarge neart=10 A
* isvery small away fromt=0 1l
* has integral 1 At
JS(t)dt = 1 t
0 At
* The exact shape does not matter 0 <0
* Atis small pt) =9 1/At te [0, At)
0 t=> At

o0(r) = lim p(¢)

At—0




Physical Interpretation

* |mpulse functions are used to model physical signals
* That act over short time intervals
* \Whose effect depends on the integral of the signal

* Examples: hammer blow, bat hitting ball instantaneously, rapid charging
of a capacitor

, \ r=0 o .
i i(t) is very large, for a very short time
__l_ A unit charge is transferred to the
+ capacitor almost instantaneously
1V 1F —l—_ V(Z) * y(t)increases to 1V almost

instantaneously




Impulse Signal

* Impulse signal 6(t) is plotted as

o(t)

»

» Delta function is not a function

* Conceptually 6(t) =0 for t # 0, infinite at t = 0, but this does not make
sense mathematically

* It only makes mathematical sense when shown inside an integral sign

* Pulse with an infinitesimal duration




Impulse Signal

* Time shift
* The signal 6,(t) = 0(t- 7) is a function with impulse attime t =1

A

6(t —1)

»
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Formal properties

* Derivative of a function with discontinuities generate impulse at each jump

* Derivative of unit step function is impulse function

de(t)
o(t) =
) =—3

&) 8(1)
4 d 4

Y SE— dt

—>
» ¢ >
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Formal properties

* Formally we define 6(t) by the property
©.@)
/ F()5(t) dt = £(0)
—00
provided that fis continuous at t =0

* Underlying assumption: 6(t) acts over a very small time interval, over

which:
f®)é(t —a)=f(a)é(t —a)

12



Formal properties

 For fcontinuous at t =T,

(oo

j o(t— 1) f(dr = f(7) L

— 00
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Input signal as a sample of itself

* Representation of a signal as a weighted integral of impulse functions

A u(t)

0 Ar 2At NAt

oo

u(t) = Ju(f)ﬁ(t—f) dr

—00
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Impulse Response

* The impulse response of a linear system g(z, 1) is the output of the
system at time t to an impulse at time 7. This can be written as

g(t,7) = G(8(¢, 7))

5(t, 1) g(t, 1)
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Impulse Response

* Linear, Time-variant System

Aul) = ot-1)) A1) = g, 7))
i’ T D _L, t

0 T 0 Ty

A u@®) = A1-1,) A0 = g, 1)
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Impulse Response

* Linear, Time-invariant System
* Delaying the input and output by a time 7 should produce the same response

[ u(t) = o) A Y1) = g(1)
t
0

0

» f

Aul) = 08(t=1) A Y1) = g(t-1)

g g
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Output of an LTI System

* We would like to determine an expression for the output y(t) of a linear and
time-invariant system for a given input u(t)

u(t) y(t)
G
y(©) = G(u®) = G ( j e T)dT) - f (D68t D) dr

o Extended linearity
= f u(t)g(t,t)dr
— 00

Impulse Response
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The Convolution Integral

* For a continuous-time linear dynamical system, the output is given by the

superposition integral:

y(t) = f w()g(t, 7)dr

* For a continuous-time LTI dynamical system, the output is represented by

the convolution integral as follows:

y(©) = f w(D)g(t — )dr: = u(t) * g(t)

e (Causal: future values

* Time-invariance

g(t,7) = g(t—1)

t
* Initially at rest [no output for t<0] y() = fO u(r)g(t —)dr
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Take home message

* The input signal can be decomposed into a set of impulses, each of which
can be viewed as a scaled and shifted delta function.

* The output resulting from each impulse is a scaled and shifted version of
the impulse response.

* The overall output signal can be found by adding these scaled and shifted
impulse responses.

* |n other words, if we know a system's impulse response, then we can
calculate what the output will be for any possible input signal.

20



Graphical Interpretation

* The output is the integral of all of these responses:

co

y(©) = j w(®)g(t — 1dr

* Let's look at the integral:
* g(t, T) = g(t - 7) is the impulse response delayed to time T
 If we consider g(¢ - T) to be a function of 7, then g(¢ - 7) is delayed to
time t and reversed

T [\g(t-r) T /\g(t-r) |

T t V / T
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Graphical Interpretation

* The output is the integral of all of these responses:

co

y(©) = j w(®)g(t — 1dr

* Let's look at the integral:
* This is multiplexed point by point with the input u(t)
* Then integrate over to find y(t) for the current time ¢t

u(T)
g(t-7) {/ - \\(\ u(t) g(t - 7)

Y

{ T v

- e,
M—’ ~
N4

>
T
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Graphical Interpretation

» Graphically, to find y(t) :

Flip impulse response backwards in time: yields g(-7)
Drag to the right over t: yields g(-(t - t))

Multiply pointwise by input : yields u(t) g(t - 1)
Integrate over to get y(t)

23



Graphical Interpretation

Express each function in terms of a dummy variable 7.
Reflect one of the functions: g(7)— g(—7).
Add a time-offset, t, which allows g(¢ — 7) to slide along the T-axis.

> 0 Dnh -

Start t at — and slide it all the way to +». Wherever the two functions intersect, find the integral of their
product. In other words, compute a sliding, weighted-sum of function f(7-) where the weighting function

is g(—7).
The resulting waveform (not shown here) is the convolution of functions fand g.

If () is a unit impulse, the result of this process is simply g(f). Formally:

/5 ot — 7) dr = g(t)

https:/ /en.wikipedia.org,/ wiki/Convolution
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Example 1

Impulse Response Input Signal
g(t) = &(¢) u(t) =&(t)
A A
1 @ 1] &
» ¢
0 0

t t

w(0)g(t — T)dt = j e()e(t — T)de

0

V() = u() * g(b) = j

0
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Example 2

Impulse Response

g(t)

Input Signal

A u(t)

N~
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Example 2

Impulse Response Input Signal
IE
4 A u(r)
1 9(7) 2
A1
-l'l O 1 Zl ébr l ] 4 .
1 0 1 2 3T
A
12
g(=7)
’
J | ] |
-1 0 1 21 ér
A
12
; 9t—1)
1 0 1 2 éb‘l'
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Example 2

A
2 u(7) u(t)
t — <0 t—1
g_(___T).. 41 9 ,)- i 0<t<1
I | |
{ L % L » |l A4 L t t L »
-1 0 1 ) 3T -1 0 1 2 371
A
u(7) fo u(7)
1 9t ® efs2 [ o9@t-7) 2<1<3
| N
ll -|, |l |_ | : ll: | | |
1 0 1 2 3 1 0 1 2 37T
N A y(@) = u(t) * g(t)
2 u(7) 12
1 £ >3 1
1 FT T 9 —1)
- b t l |
1 0 1 2 3T -1 0 1 é 31T
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Properties of Convolution

* Commutative Property
t

900 *u(®) = u(®) * g(6) = j g@ult — D)ds

0

* If we make the substitution 7, =t-1,thent=t- 7, and dt = -dt,4

0 t

g(0) * u(t) = j gt — (e (—dy) = f w(r)g(t — 1)(dry)
t 0
= u(®) * g(O

* Practically, if we have two signals to convolve, we can choose either to be
the signal we hold constant and the other to flip and drag.
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Properties of Convolution

* Associative Property
u(t) * [g1(t) * g2(®)] = [u(t) * g.(£)] * g2(¢t)

* Combined with commutative property, associative property means that we
can perform the convolutions in any order

* Distributive Property (Linearity)
u(t) * [g1(8) + g2(@©)] = u(t) * g1 () +u(®) * g2 (¢)

* All three properties together mean that there is an algebra of signals
» Addition is like arithmetic or ordinary algebra
* Multiplication is replaced by convolution

30



Properties of Convolution Systems

* Composition of convolution systems corresponds to convolution of
Impulse responses
* Many operations can be written as convolutions and they all commute:

differentiation, integration, delay etc.

—>»

g1(?)

u(?)

g:(?)

-

C V(1)

A

u(t)

—» 21

g:(?)

W)
>

(0
M) e —n
u(t) ()
— o () * 20 N




Properties of Convolution Systems

* (Convolution systems are time-invariant
* If we shift the input signal u(t) by , i.e. apply the input

u(t) =u(t —1)

to the system, the output is

y,(t) = y(t—1)

* In other words, convolution systems commute with delay
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Example 3

* The impulse response of an LTl dynamical system is given by:

g(t) = Ae™
Find the unit step response (output for the input signal represented by a unit
step function). ¢
)(0) = €(1) * g(1) = Je(r)g(r— 1)dt
0
e(T) A
1 =

|




Example 3

e(t)g(t-1) 4
A L
t /
e <0 JOdT =0 -
0 t T
0

{
e >0 JAe‘O‘(t‘T)dT = Ae‘atjeafdr = Ae‘o‘tle‘“ﬁ)
(04
0

0

— ée—at(eoct_ 1) — é(l _e—at)
(04 04
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Example 3

() A

y(1) = A1 - eon)
04
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Example 4

* The impulse response of an LTl dynamical system is given by:

g(1) = &(1)

Find the output signal in response to the following input signal.

u(t) A
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Example 4

For 0<r<1 &)

t t
[u(me(t-1) dr = [r-1-dr = %tz
0 0

For1<tr<?2
t | t
J'u(r)e(t—r)dr = _[T- 1 -dT+J'(—r+2)- 1-dt
0 0 !
t

| [ 2 |
= — —_— 2 = —— t2—4l' 2
2+( 2T+ T)l 2( +2)

Y~

(t-7)

u(t)
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Example 4

A
For t2>2
t ! e(t-7)
|
- dt=2-=- =1
Ju( T) g( t T) ' 2 u(T)
0
y(@®) A
0 for <0 N
%’2 0<t<1 ol
= !
—%t2+2t—1 1<t<2 osl
1 t>2




Example 5

* Determine and sketch the convolution of the following two signals:

t+1, 0<t<1
x(t) =<2 —t, 1<t<?2
0, elsewhere

git)=6(t+2)+256(t+1)

e Answer:
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Example 5

* Determine and sketch the convolution of the following two signals:

t+1, 0<t<1
x(t) =<2 —t, 1<t<?2
0, elsewhere

git)=6(t+2)+256(t+1)

e Answer;
(t+3, —2<t<-1
t + 4, —-1<t<0
Yy =43, _2¢ 0<t<1
LO’ elsewhere
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Example 5

gt) =60+ 2)A+ 20(t+ 1) x(t)
6(t+2) 26(t+1) t

/]

LTl .

-2 -1 1 2

g(—z) @ g(—I+ t)
20(—t+1) o6(—t+2) 20(—t+1+1¢t) 6(—t+2+1)

N R

1 2 1+t 2+t




Example 5

g(—7+1t) x(t)
A

20—t +1+1t)
T T5(—T+2+t) /l

jﬁ(t— 7) f(Hdt = f(7)

— 00
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Finding impulse response from unit step response

* It is experimentally challenging to generate impulse function.
* Impulse response can be found from the unit step response.

* Unit step response

(o) t t

s(t) = J e(t)g(t —1)drt =jg(t —17)dt = jg(r)dr

—00 0 0
* Impulse response

ds(t)
dt

=g(t)
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Finding impulse response from unit step response

* The impulse response is determined by differentiating the step response

0 V\S@—
* >

—_— xh —

d

dt

—

* To show this, commute the convolution system and the differentiator

If\h(z)

0o <~ 7

o(1)
u(t)
0 T I vl
d
—» — —>

xh

—
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Perspective: Finding the output for a given input

* Option 1: Solving the state equation
t

y(t) = CeAlx, + cjeAO—'f)Bu(r)dH Du(t)
0

* Option 2: Impulse response and convolution integral

* Option 3: Laplace transform and transfer function
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Projection between Time and Laplace Domains

-
u(t) . . . y(t)
Time Domain . Dlﬁerf_lr_wltgsigt;stlons .
N /
L @ ﬁ -1 YO =u®*g®
4 U v I
Laplace Domain (5) > Transfer Function (5) )
G(s)
o /

Y(s) = U(s)G(s)
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Complex Numbers

Notation

s=a+jb j=v-1

Complex Conjugate (reflection about the real axis)

S=a—jb
* Complex Algebra
1 a b
s a2+b2 ’aZ+ b2

Absolute value

r = |s| = v a? + b?

» Re
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The exponential function

* Taylor Series

¥ =1+ +x2+x3+ +—+
e —_ X N N R
2 6 n!

* Euler’s identities
e/ = cosw + jsinw
e /¥ =cosw — jsinw

e Limits
lim xe™™*

X—00

=0 if xisreal

lim eS¢ = 0 if the real part of s is positive

t—oo
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Laplace Transform

* For a given function f (t) with f(t) = 0 for t < 0, Laplace transform of this
function is defined as follows:

F@s) = LIF©] = [ f@e~de
0 s Is a complex variable

s=a+jb
7 ]

J () P F(s)

* Inverse Laplace Transform

f@) = L7HF(s)]
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Existence of Laplace Transform

* The Laplace transform of a function f (t) exists if the Laplace integral
converges

* The integral will converge if f (t) is piecewise continuous in every finite
interval in the range t > 0 and if f (¢) is of exponential order as t approaches
infinity.

» A function is said to be of exponential order if a real, positive constant o
exists such that the function

e~ f (0)]

approaches zero as t approaches infinity. If the limit approaches zero for o
greater than o, and approaches infinity for o less than o, the value o, is called
the abscissa of convergence.

50



Existence of Laplace Transform

Abscissa of convergence is equal to zero for functions such as

t,sin wt, t sin wt

* Abscissa of convergence is equal to -c for functions such as
e te ™ e sin wt
* |n the case of functions that increase faster than the exponential function, it
Is impossible to find suitable values of the abscissa of convergence
t? 4 t?
e ,te

* Nevertheless, the following function does possess a Laplace transform

2

et 0<t<T< o0
t) =1¢ =ts
f() 0, t<0,T<t

* All signals that can be physically generated have Laplace transforms.

51



